ECE 6554: Advanced Computer Vision

Pose Estimation

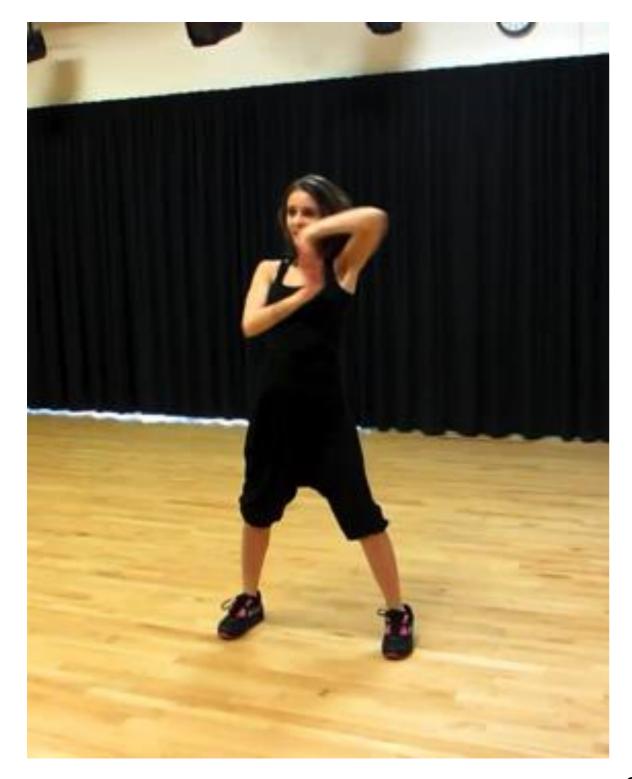
Sujay Yadawadkar, Virginia Tech

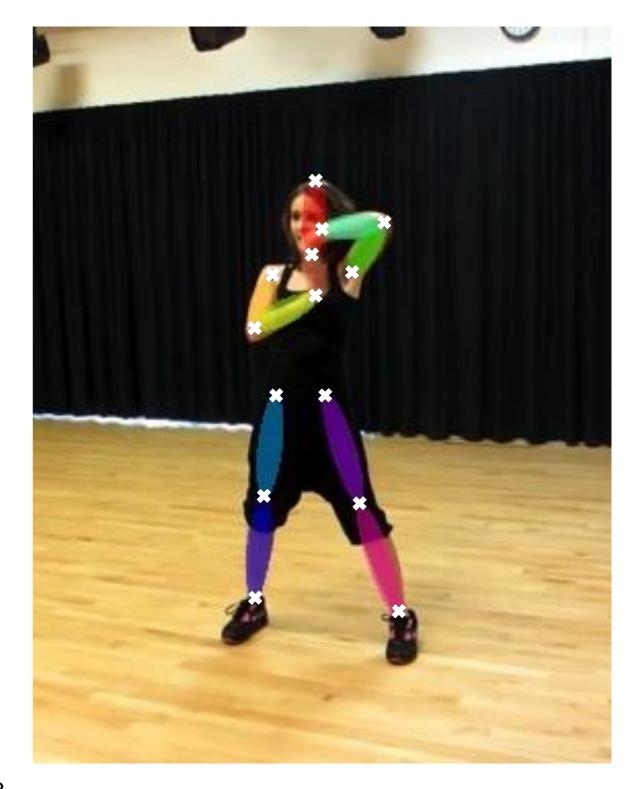
Agenda:

- Pose Estimation:
- Part Based Models for Pose Estimation
- Pose Estimation with Convolutional Neural Networks (Deep pose)
- Pose Estimation with Sequential Prediction (Pose Machines)

Estimating Articulated Poses

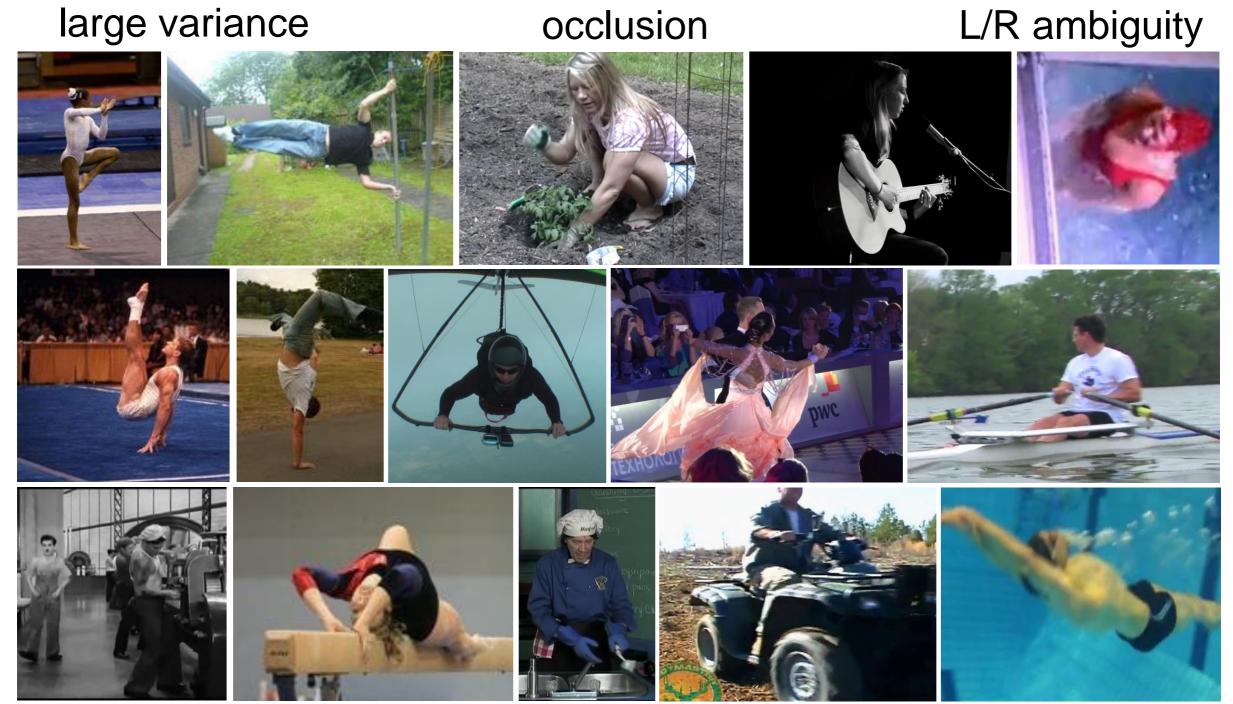
Localizing Body Joints from Monocular Images



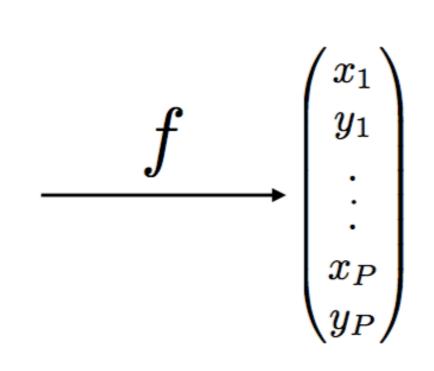




Estimating Articulated Poses from Monocular Images Why it is Hard?

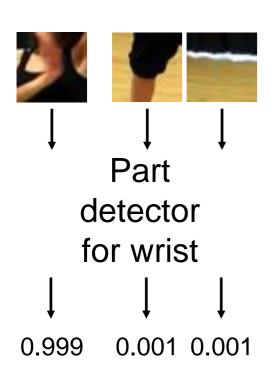


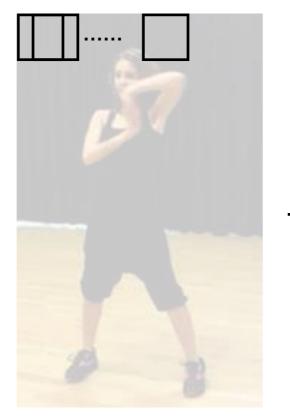
Estimating Articulated Poses from Monocular Images Direct Mapping

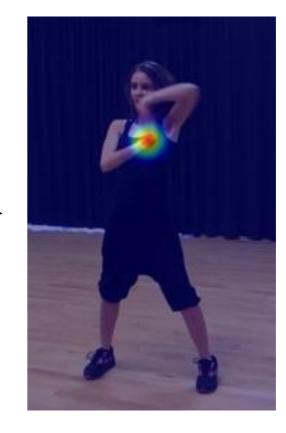


Part-based Models

Recognizing Local Appearance







Confidence maps

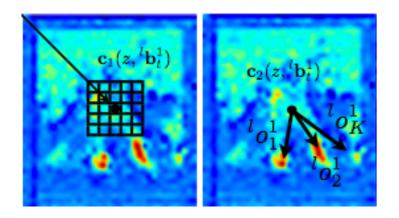
Non-parametric Uncertainty on Confidence Maps

right wrist

Extracting Features from Confidence Maps Loses Uncertainty

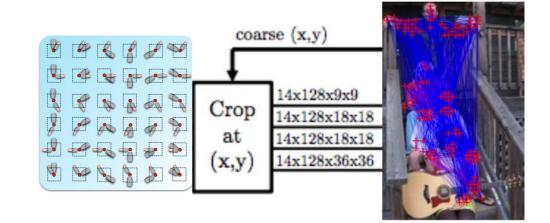
Hand-crafted Context feature

[Ramakrishna14]



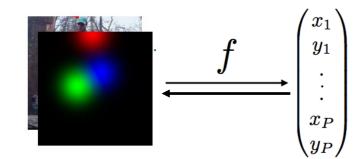
Peak Candidates for Graphical Models

[Chen14] [Tompson15] [Pishchulin16]

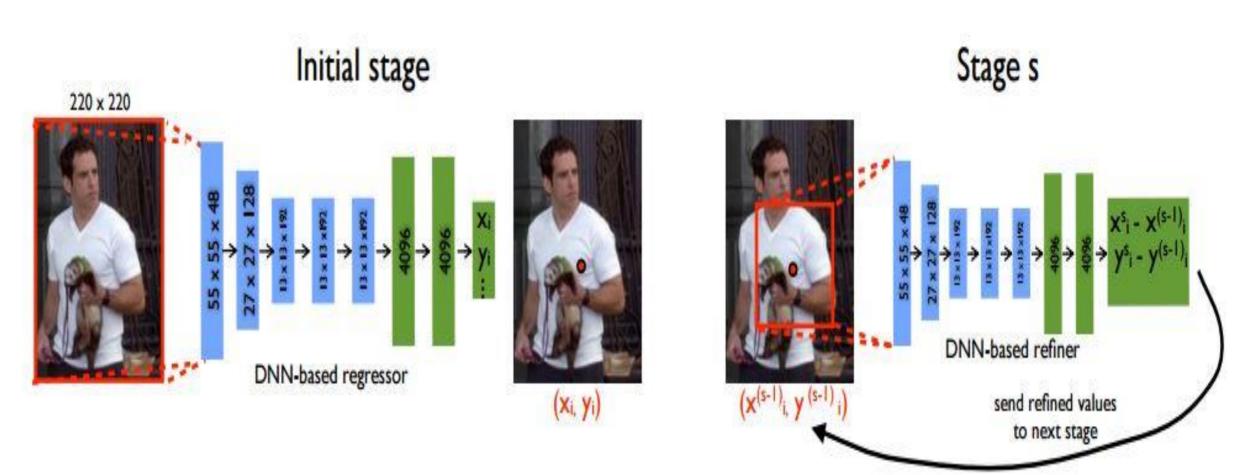


Regress to Displacement

[Carriera16]



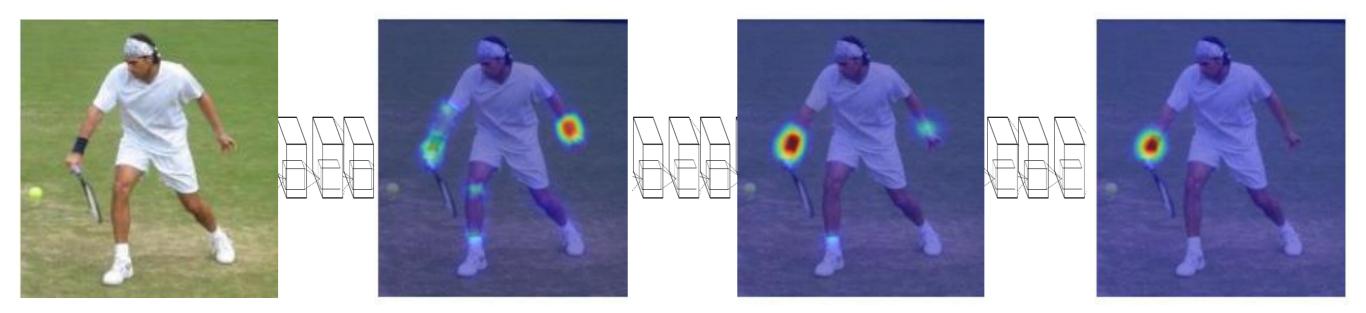
Pose Estimation with CNN



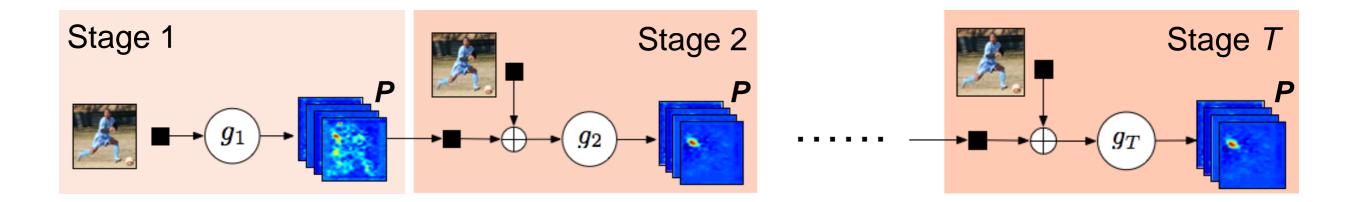
- Consider Pose Estimation as a regression problem.
- Loss function: L2 distance between ground truth of the pose vector and estimated pose vector.

Convolutional Pose Machines

- 1. Capture local appearance with CNNs
- 2. CNNs on confidence maps to capture long-range part dependencies (preserve uncertainty)
- 3. Iteratively refine confidence maps with global cues

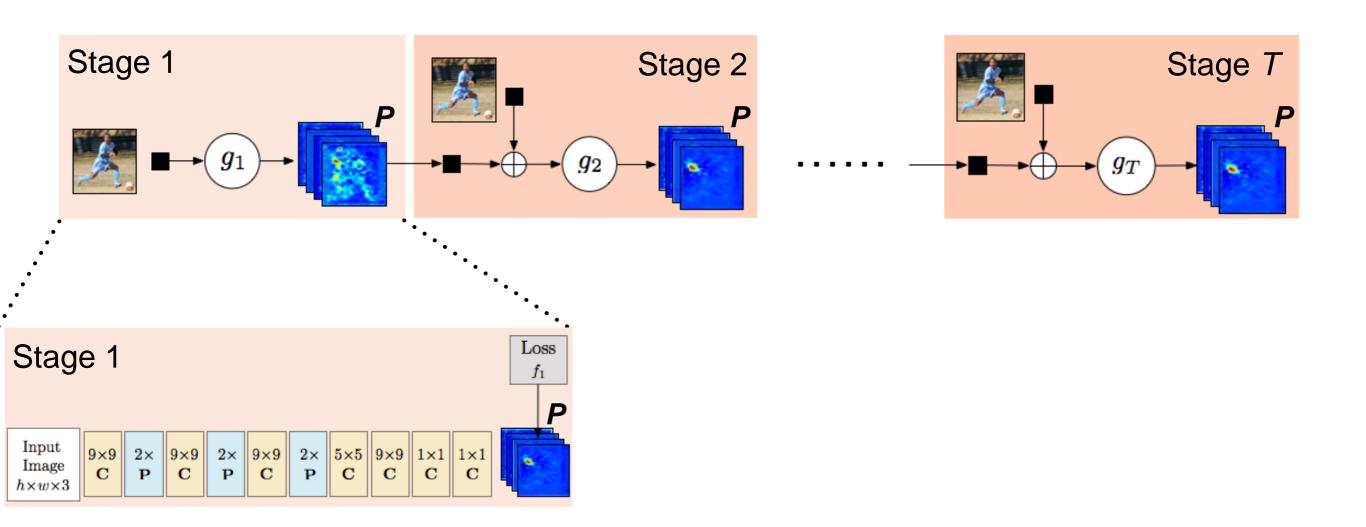


Convolutional Pose Machines (CPMs)



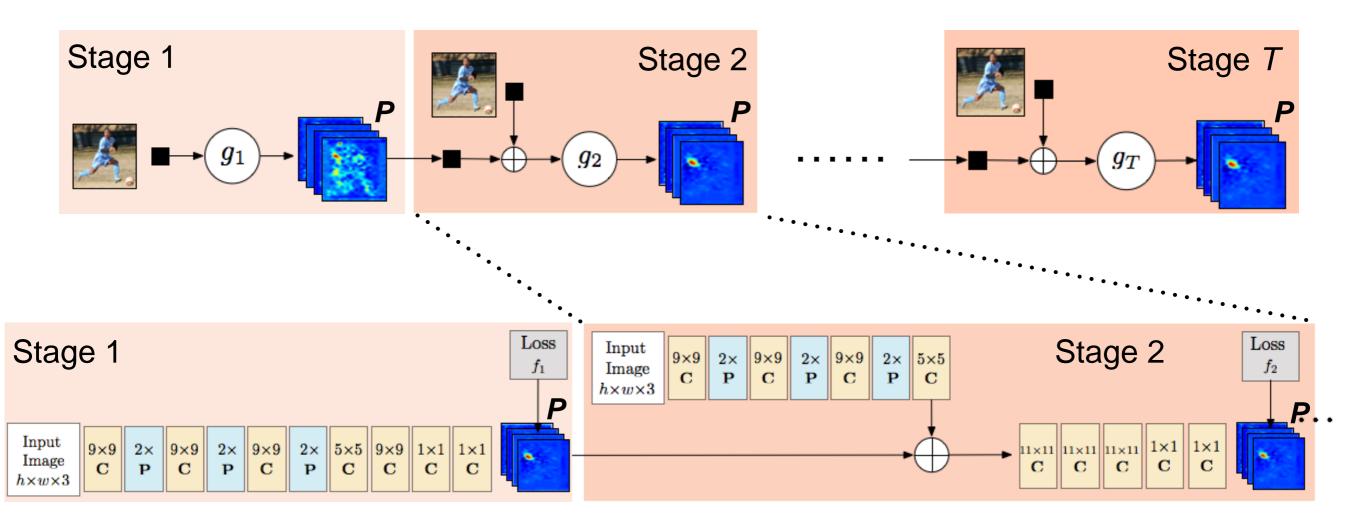
Convolutional Pose Machines

Capturing Local Appearance by FCNN

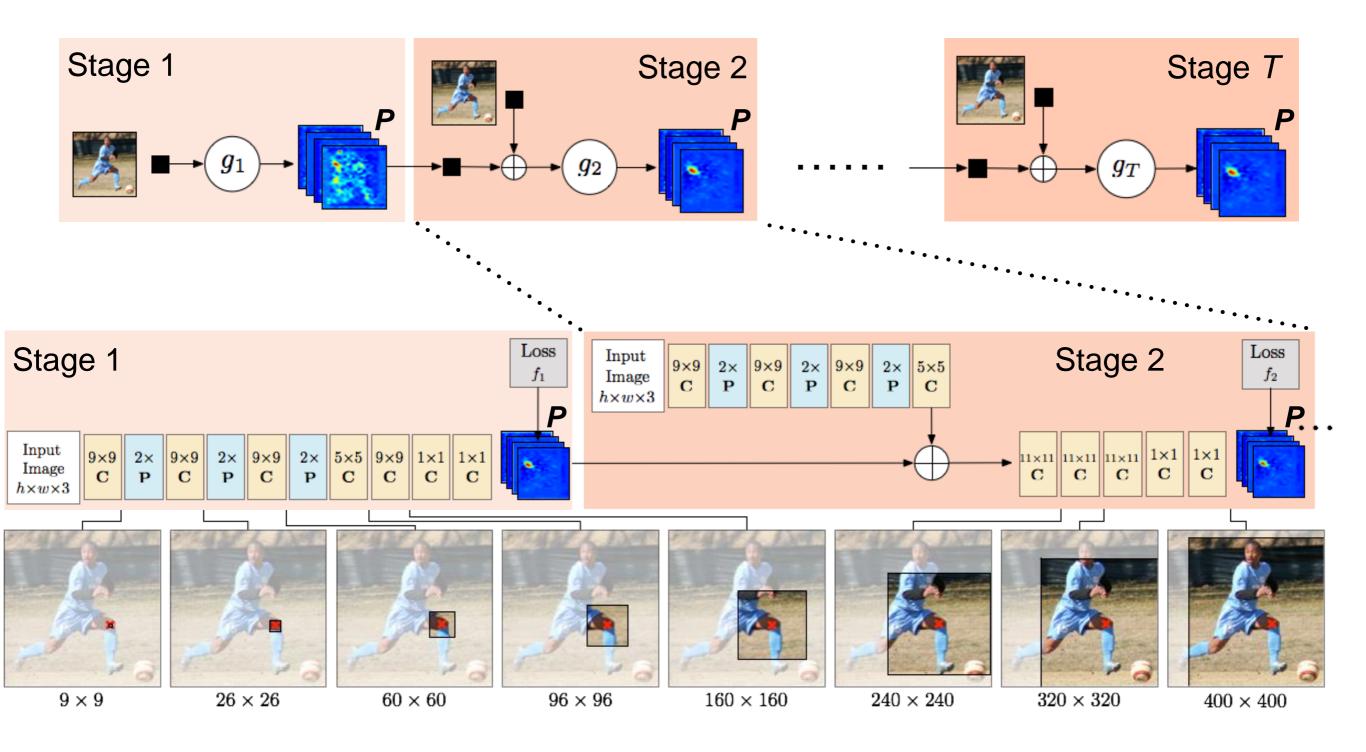


Convolutional Pose Machines

Learning Image-dependent Spatial Model

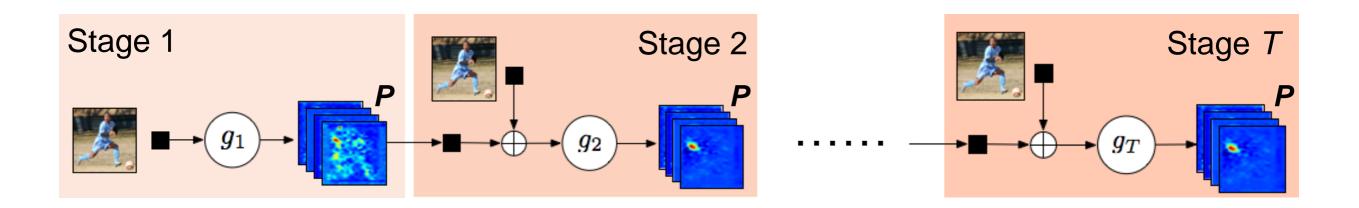


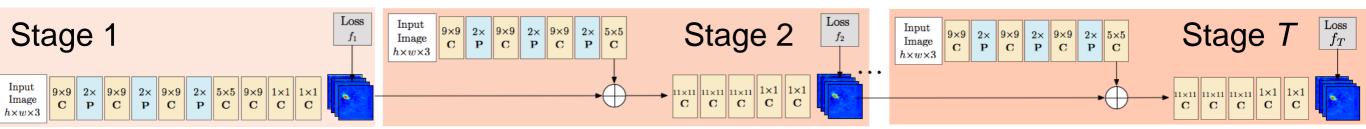
Convolutional Pose Machines Large Receptive Field



Convolutional Pose Machines

Overall Architecture



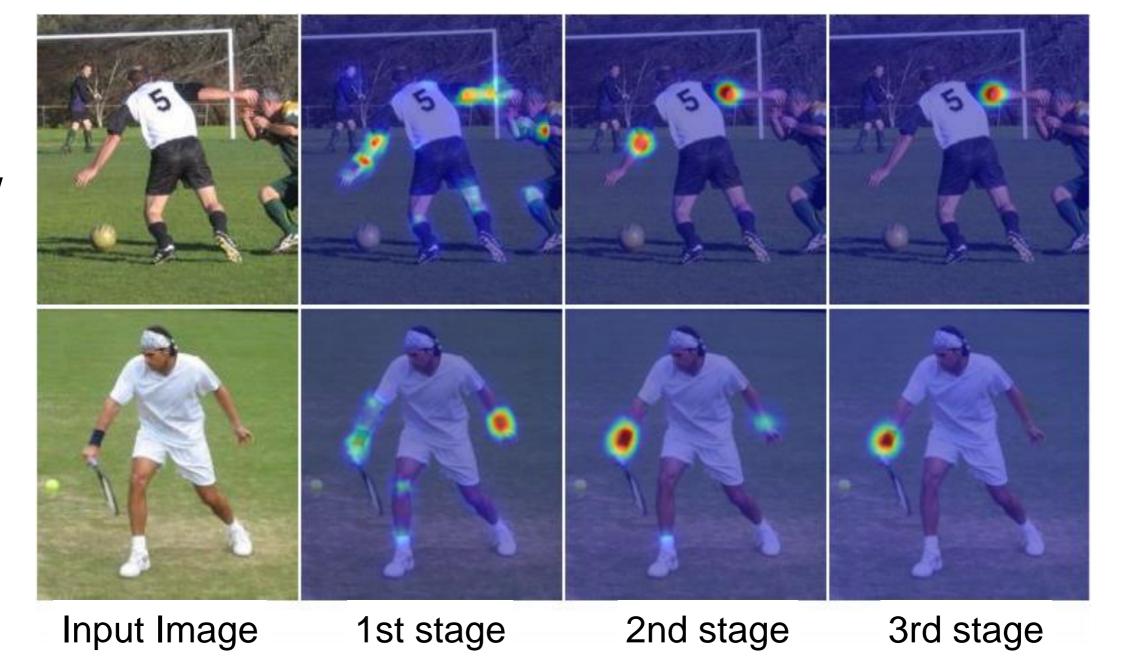


Iteratively Refined Confidence Maps

right elbow

right

wrist



Iteratively Refined Confidence Maps

Recover from False Negative

1st stage

R. Elbow

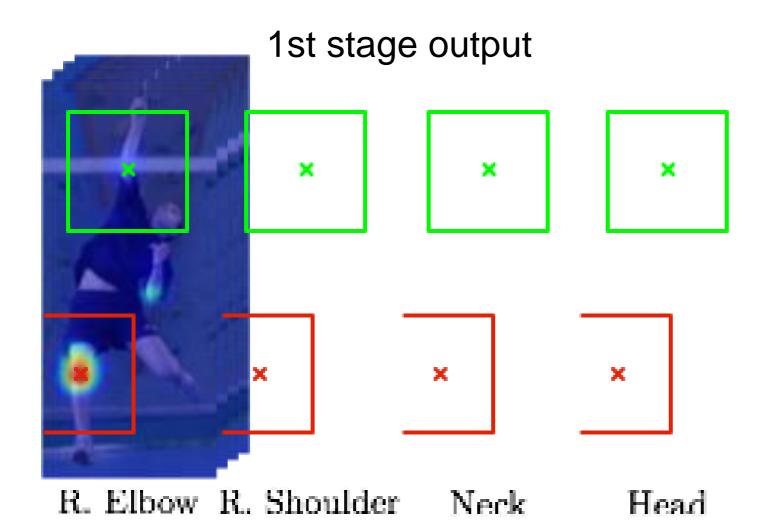
2nd stage

R. Elbow

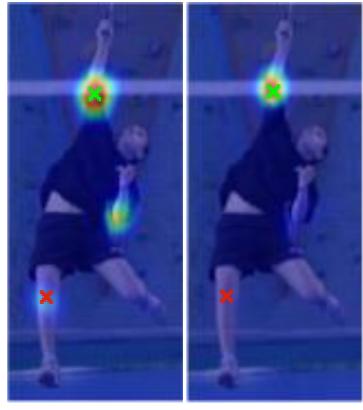
3rd stage

R. Elbow

Iteratively Refined Confidence Maps Recover from False Negative



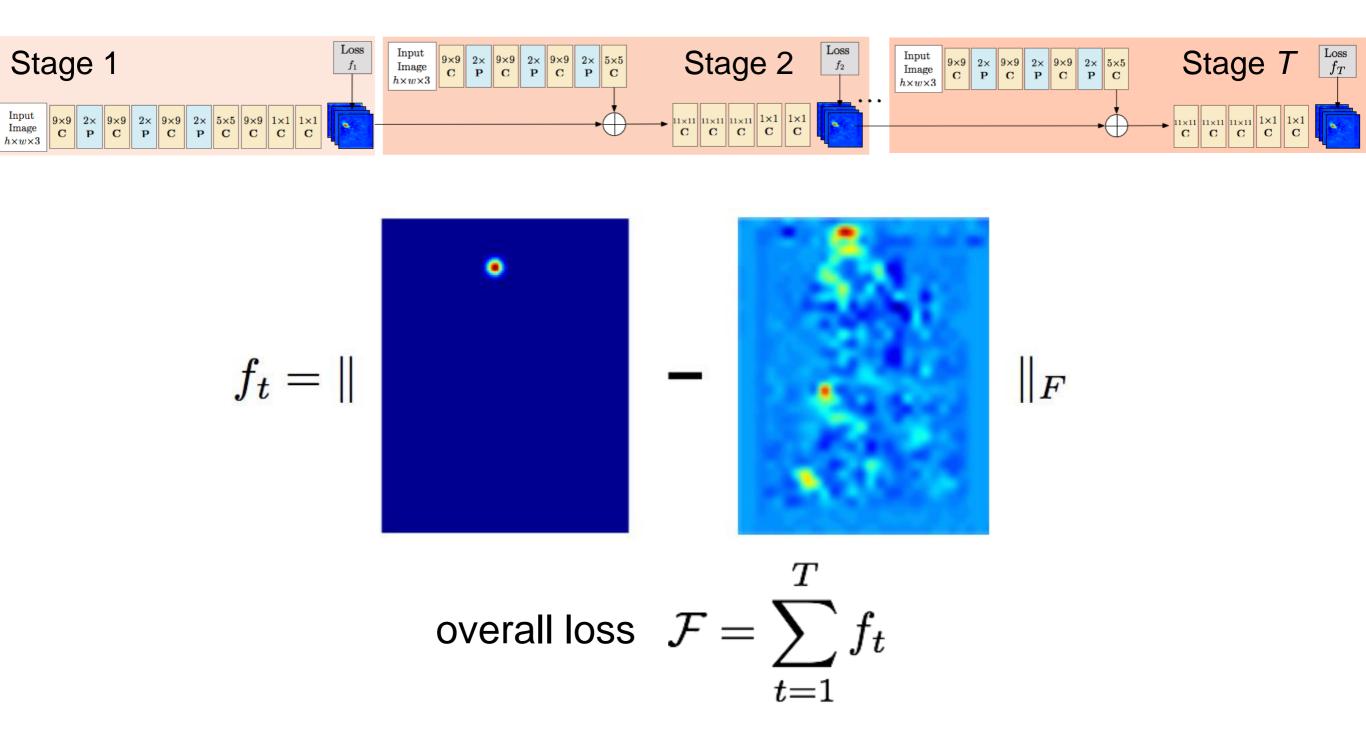
2nd stage 3rd stage



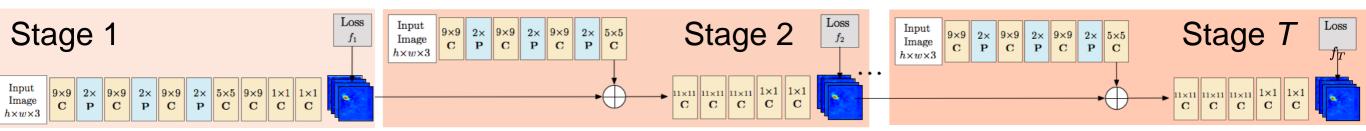
R. Elbow R. Elbow

Iteratively Refined Confidence Maps

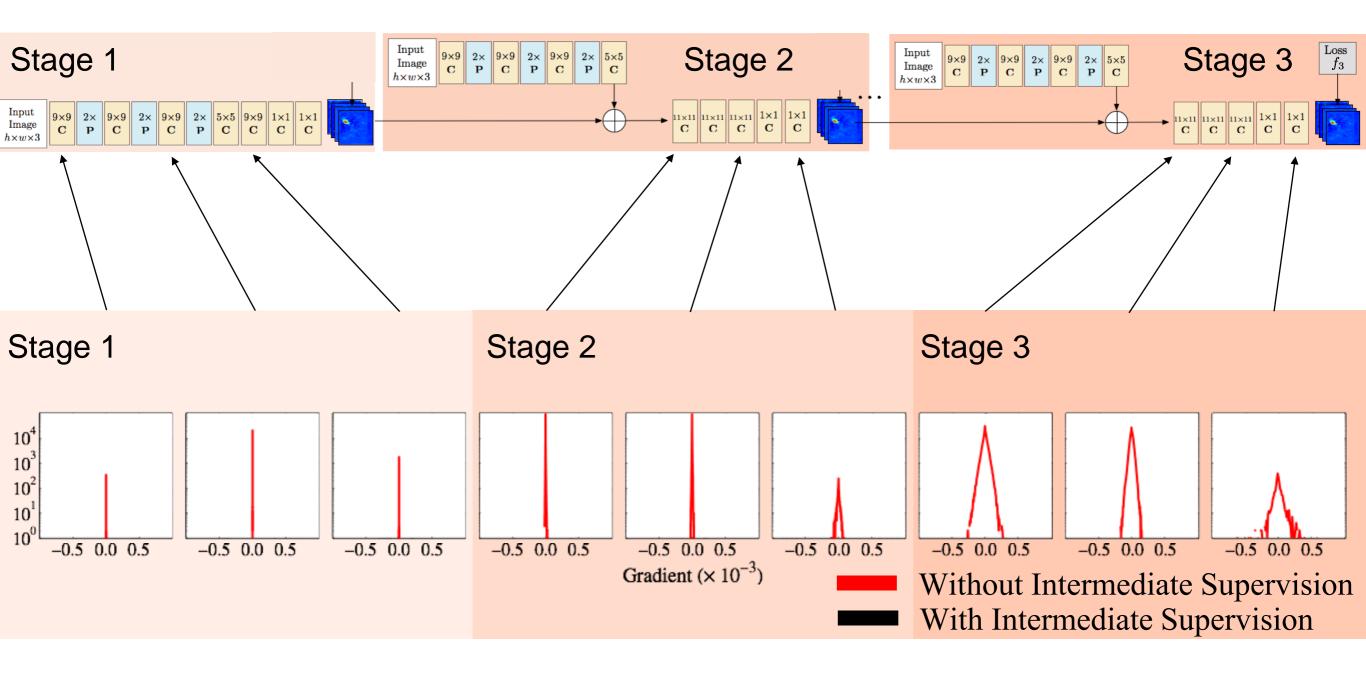
Training CPMs Ideal Confidence Maps for Intermediate Supervisions



Training CPMs Joint training with Intermediate Supervisions

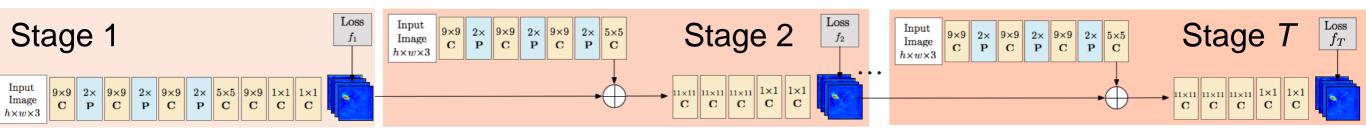


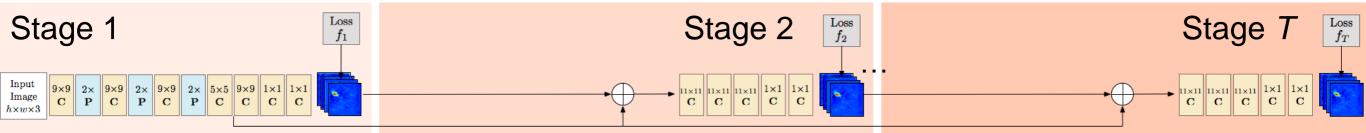
Training CPMs Intermediate Supervisions Resolves Gradient Vanishing



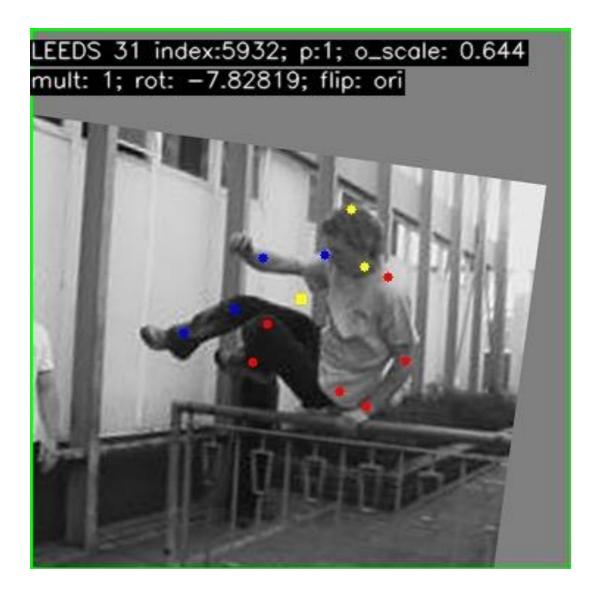
Convolutional Pose Machines

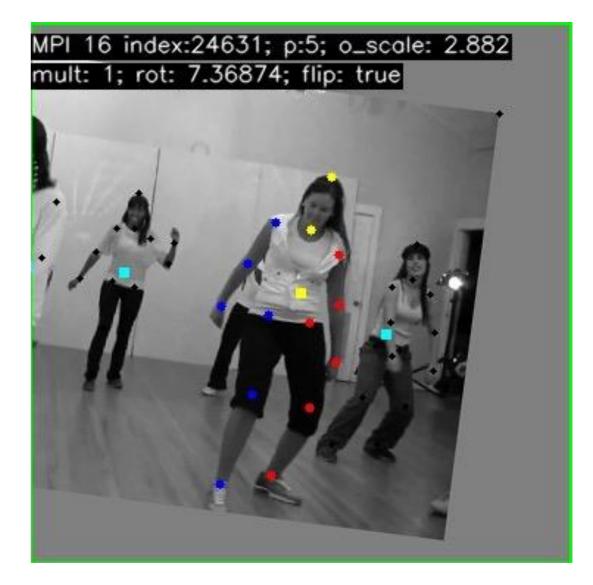
Overall Architecture with Shared Image Features





Training CPMs Data Prepare and Augmentation





Analysis and Results

Benchmark Datasets

size

type annotation

FLIC

3987 training 1016 testing

movie scenes upper body

LSP

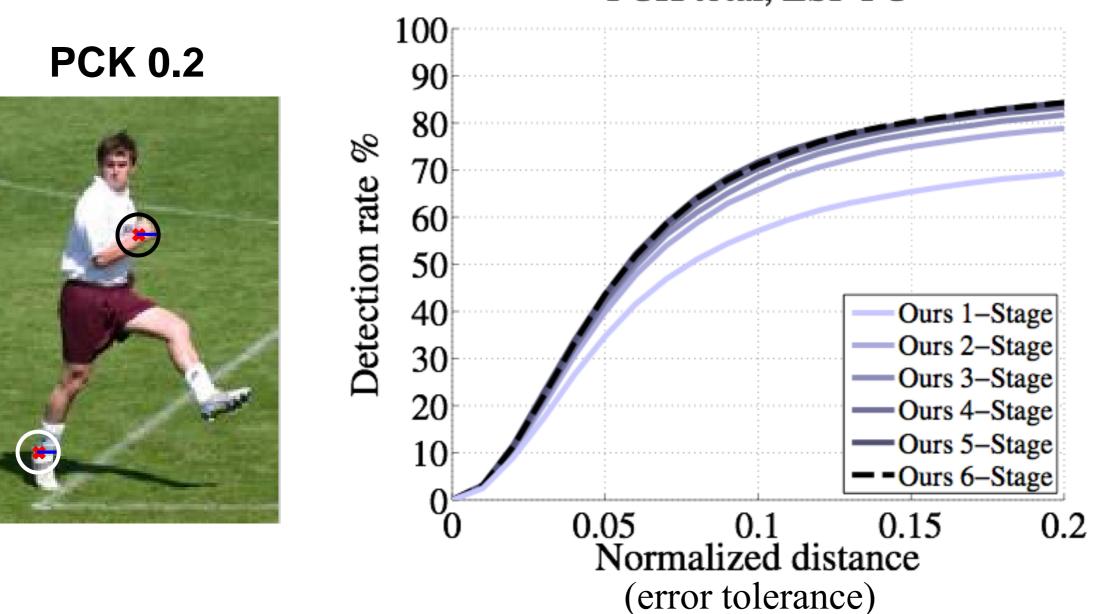
11000 training 1000 testing sports full body

MPII

29116 training 11823 testing

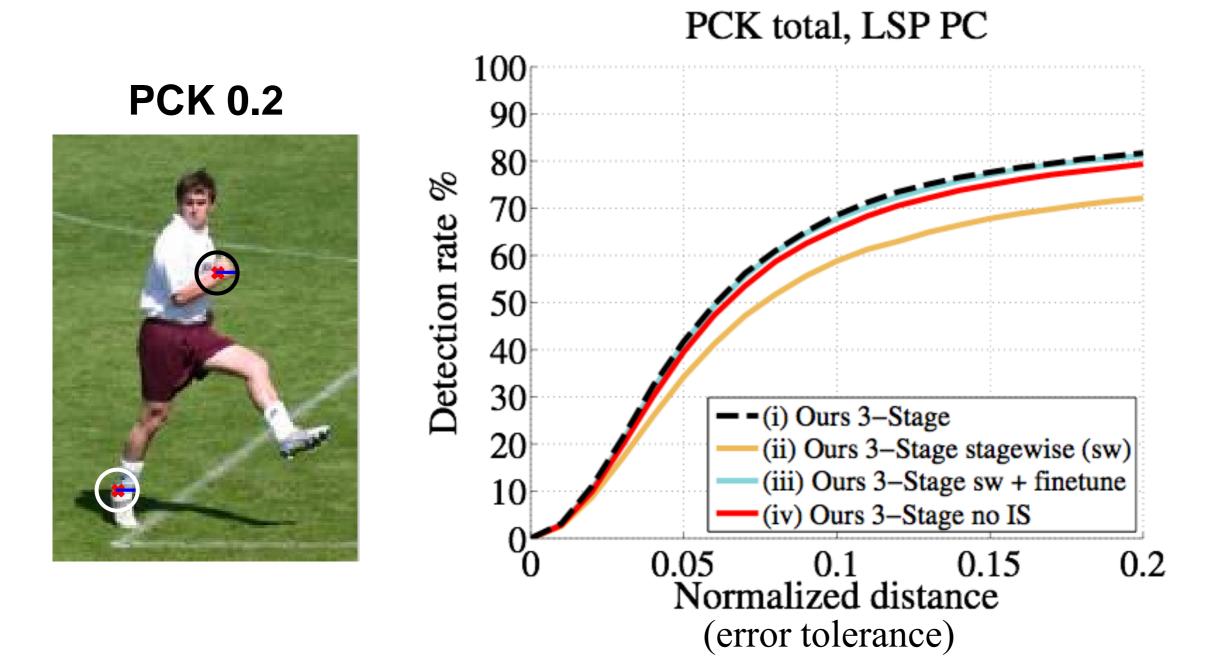
diverse full body w/ truncation

Number of Stages



PCK total, LSP PC

Training Methods



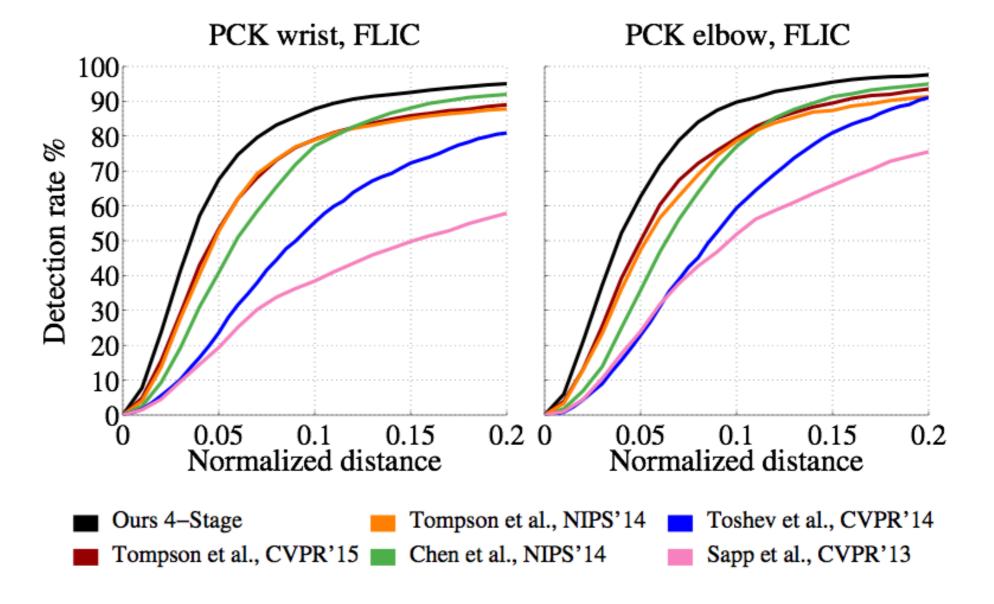
31

Quantitatively Results

FLIC Upper Body with Observer Centric (OC) Annotations

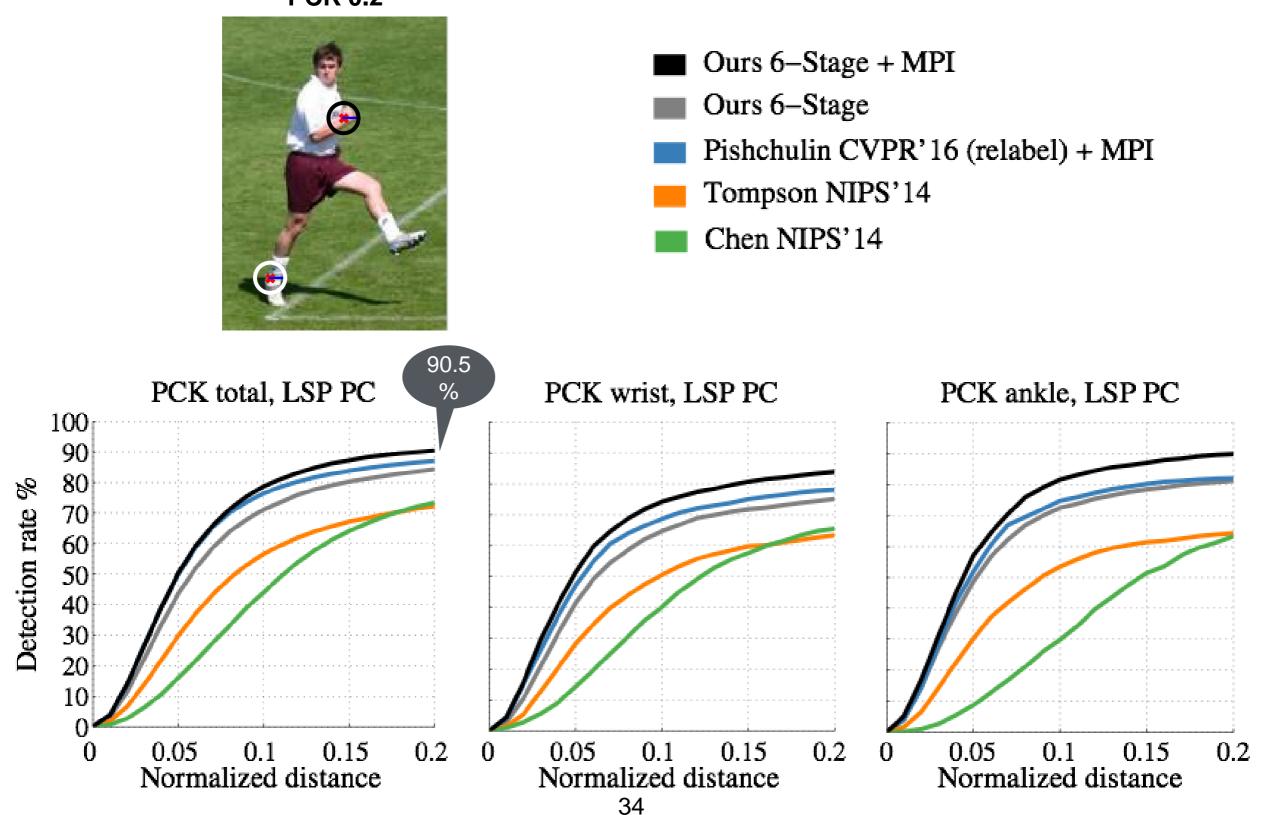
PCK 0.2

PCK 0.1

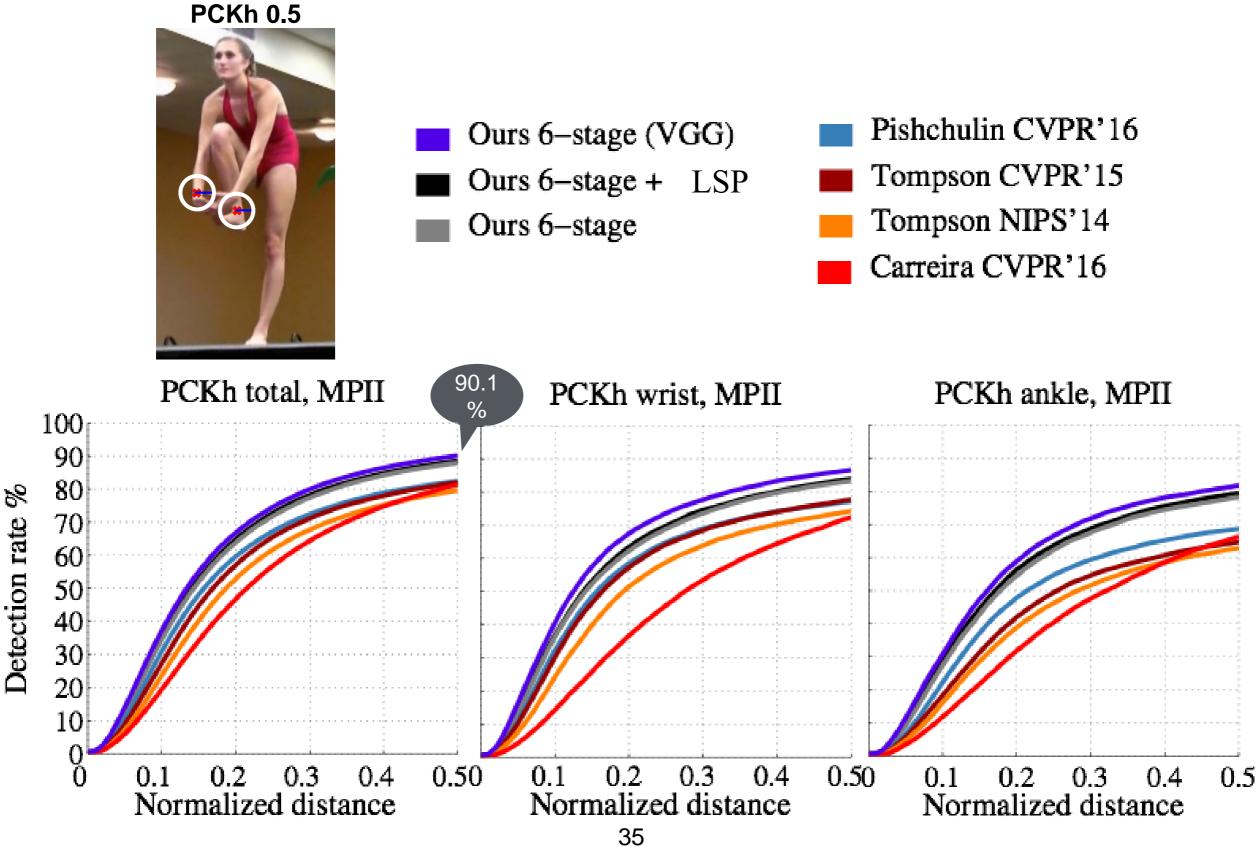


Quantitatively Results LSP Dataset with Person Centric (PC) Annotations

PCK 0.2

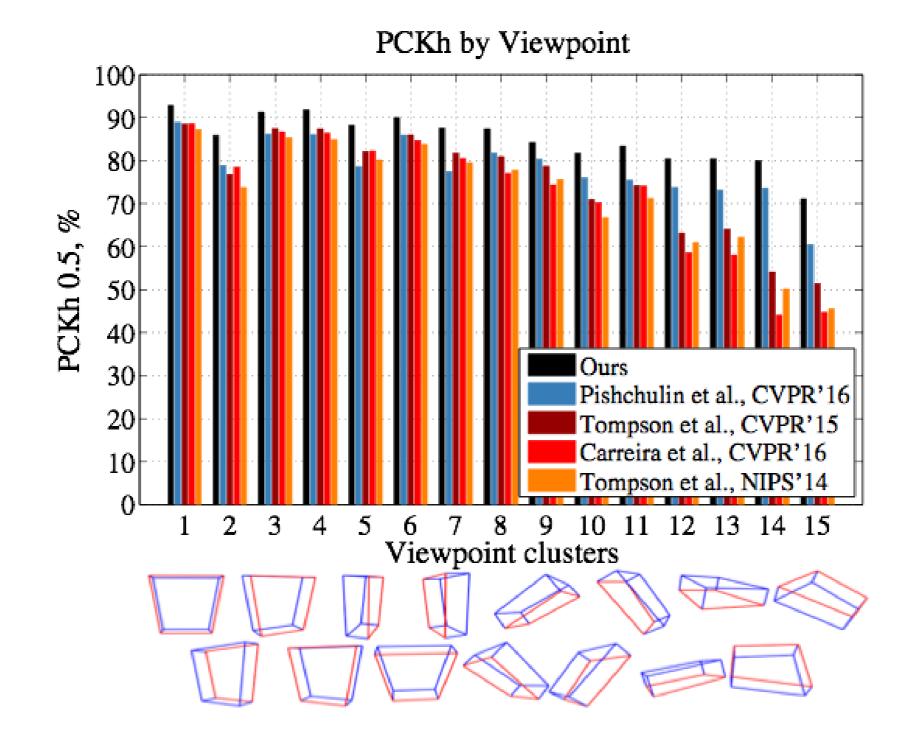


Quantitatively Results MPII Dataset with PC Annotations



Quantitatively Results

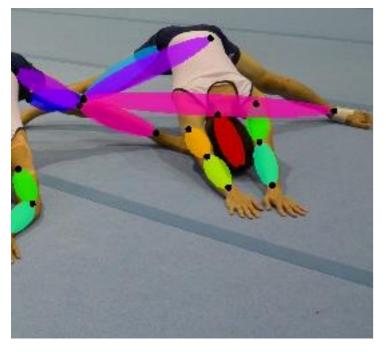
MPII Dataset: Viewpoints



Convolutional Pose Machines: Model trained from MPII Dataset

Failure Cases

L/R confusion



<section-header>

rare pose

severe occlusion

right wrist

- Monocular human pose estimation are becoming reliable.
- CPMs capture complex long-range part dependencies by iteratively refining confidence maps with preserved uncertainty.
- CPMs naturally avoid the problem of vanishing gradient by intermediate supervisions.

What's Next?

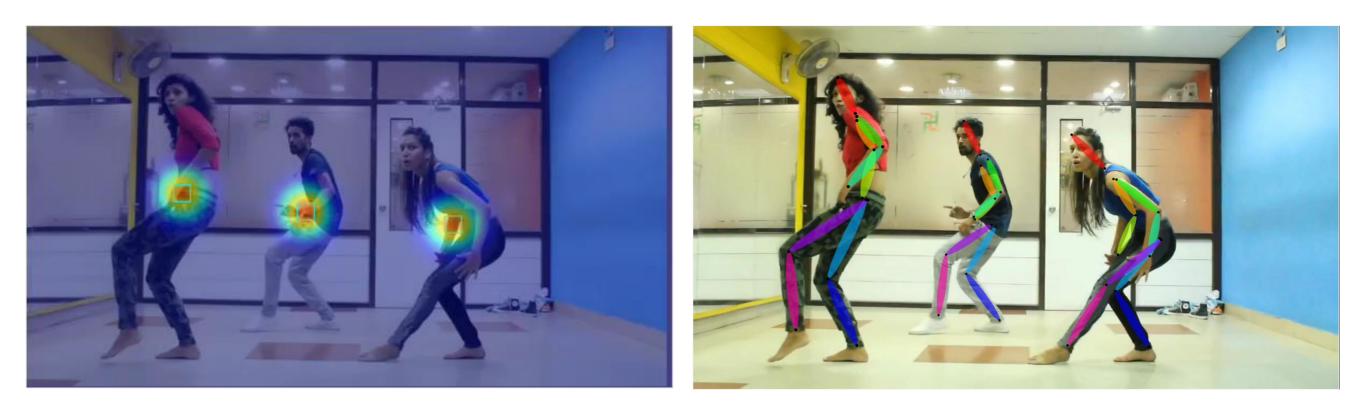
From Single to Multi-Person

Challenge: Identifying number of people and part-person association

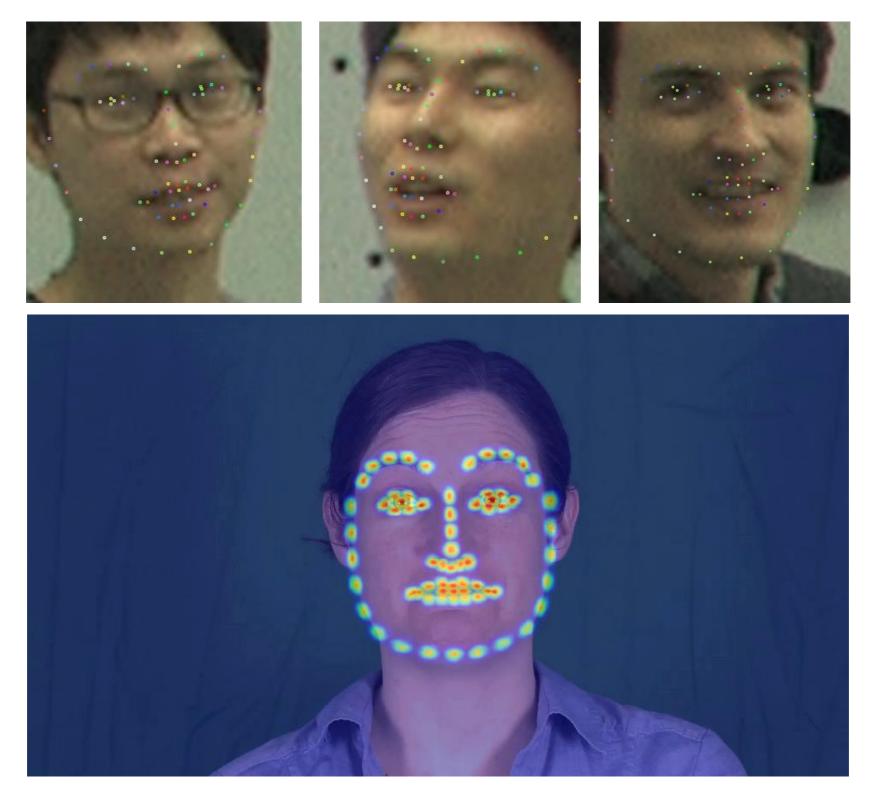
Multi-person Human Pose Estimations

Naive Two-phase Method

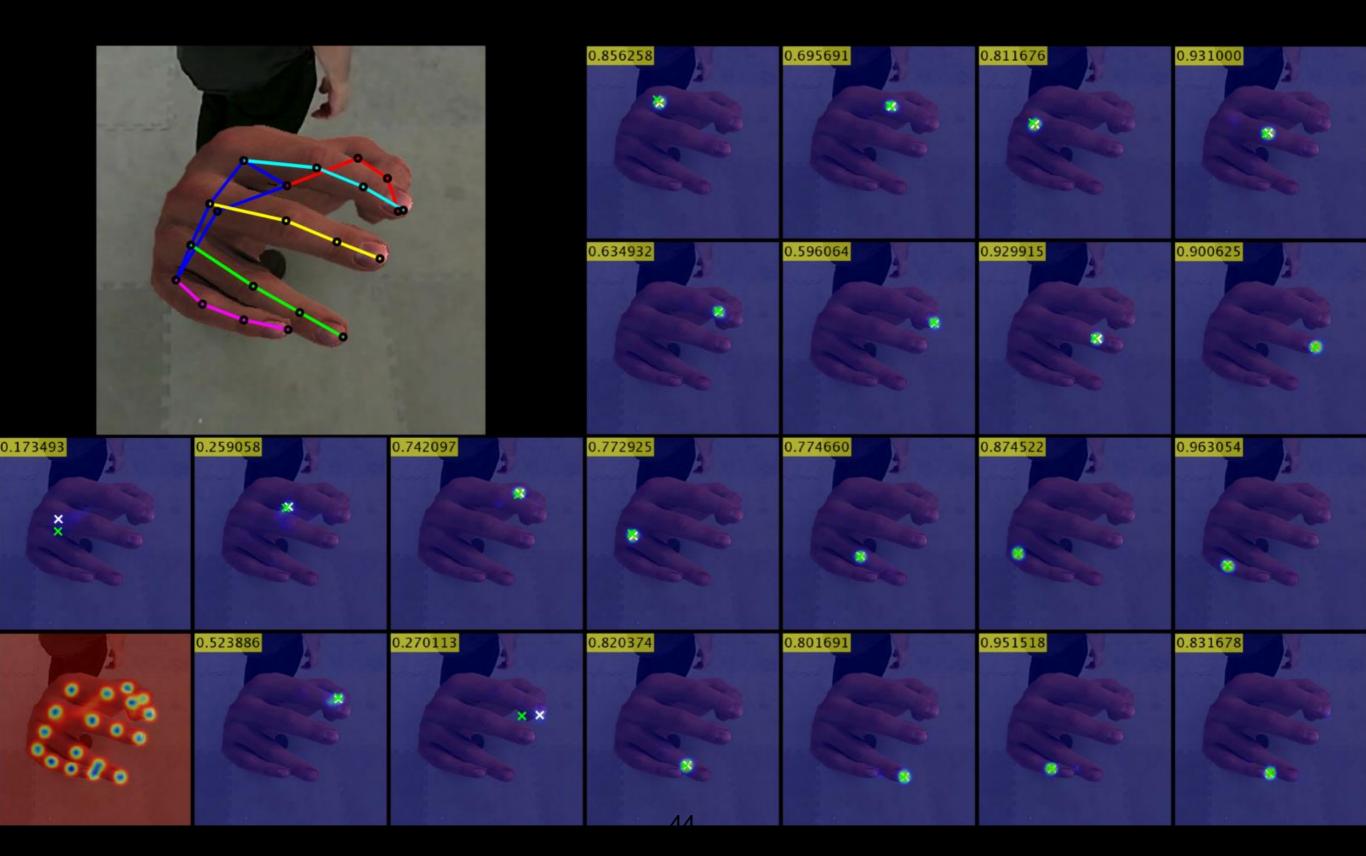
CPM with P = 1 (person detector)



Pose Estimations in Finer Scales Faces



Pose Estimations in Finer Scales Hands

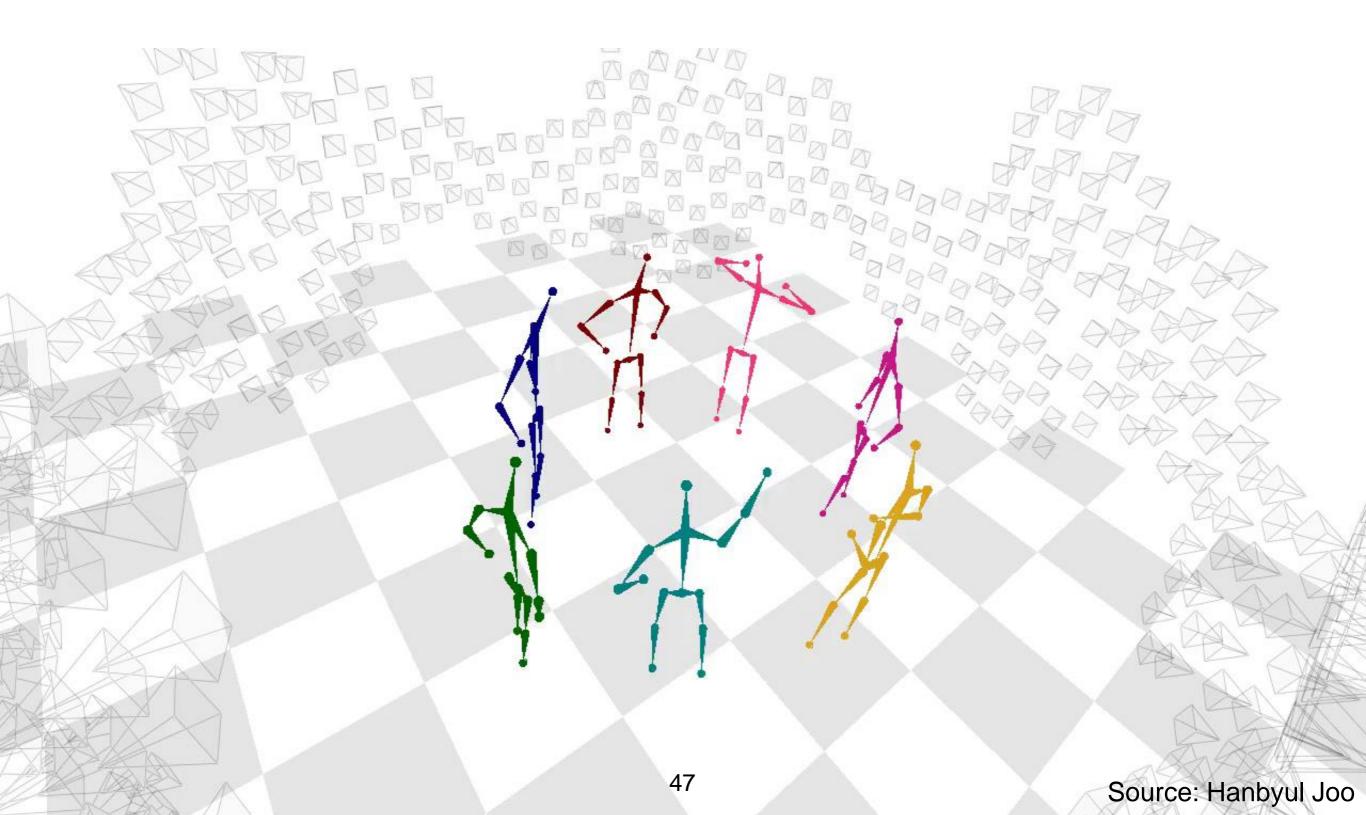


CMU Panoptic Studio 500 Synced Cameras

Multiple Views for 3D Recon

Right Wrist

Multiple Views for 3D Reconstruction

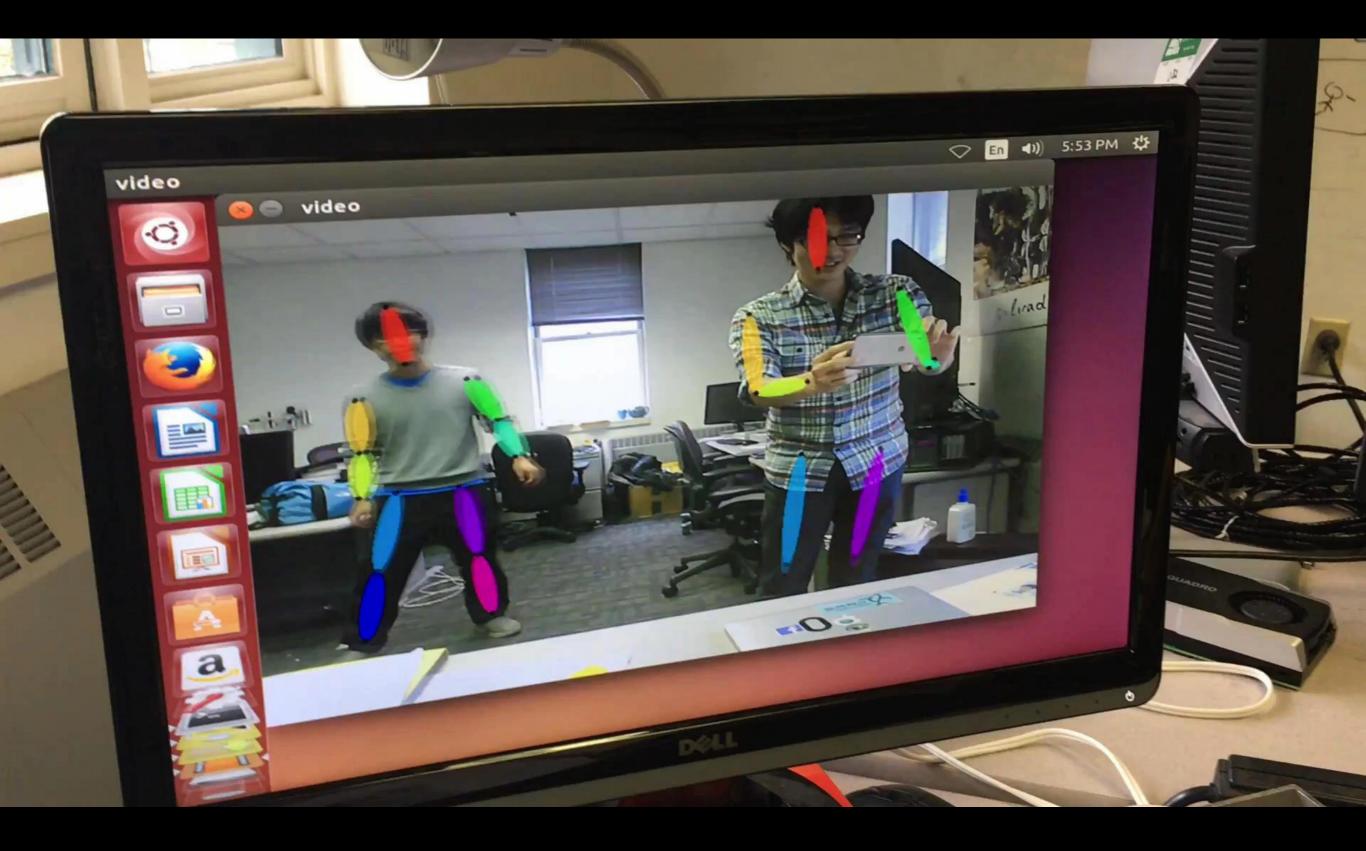


Multiple Views for 3D Recon

Projected Full Poses

Live Demo!

Real-time CPMs



Real-time CPMs: Confidence Map of Right Wrist

Future Directions

- Analysis on failure cases and data distribution
- One-shot multi-person pose estimation
- Direct 3D reasoning
- -Temporal CPMs

Thank you Questions?

Check our Paper, Github, and Youtube Channel!