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Agenda:

• Pose Estimation:

• Part Based Models for Pose Estimation

• Pose Estimation with Convolutional Neural 

Networks (Deep pose)

• Pose Estimation with Sequential Prediction (Pose 

Machines)



Estimating Articulated Poses
Localizing Body Joints from Monocular Images

Our goal is…monocular (single view)
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Estimating Articulated Poses from Monocular Images

Why it is Hard?

large variance occlusion L/R ambiguity

(single view)
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Estimating Articulated Poses from Monocular Images

Direct Mapping



Part-based Models
Recognizing Local Appearance

Confidence 

maps
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……

Part

detector

for wrist
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Non-parametric Uncertainty on Confidence Maps
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right wrist
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Hand-crafted

Context feature

[Ramakrishna14]

Extracting Features from Confidence Maps 

Loses Uncertainty

[Carriera16]

Regress to 

Displacement
Peak Candidates for

Graphical Models

[Chen14] [Pishchulin16][Tompson15]



Pose Estimation with CNN

• Consider Pose Estimation as a regression problem.

• Loss function: L2 distance between ground truth of 

the pose vector and estimated pose vector.



Convolutional Pose Machines

1. Capture local appearance with CNNs

3. Iteratively refine confidence maps with global cues
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2. CNNs on confidence maps to capture long-range part 

dependencies (preserve uncertainty)



Convolutional Pose Machines (CPMs)
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P

Stage 1

P

Stage 2

……

Stage T

P
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P P

Stage 1 Stage 2

……

P

Stage 1

Capturing Local Appearance by FCNN

Convolutional Pose Machines

Stage T

P
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P P

Stage 1 Stage 2

……

P

Stage 1 Stage 2

P

Learning Image-dependent Spatial Model

Convolutional Pose Machines

Stage T

P



Large Receptive Field
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P P

Stage 1 Stage 2

……

P

Stage 1 Stage 2

P

Convolutional Pose Machines

Stage T

P



Convolutional Pose Machines
Overall Architecture
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P P

Stage 1 Stage 2

……

Stage T

P

Stage 1 Stage 2 Stage T



Iteratively Refined Confidence Maps

right

elbow

right 

wrist

1st stage 2nd stage 3rd stageInput Image
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Iteratively Refined Confidence Maps
Recover from False Negative

1st stage 2nd stage 3rd stage



Iteratively Refined Confidence Maps

1st stage output 2nd stage 3rd stage
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Recover from False Negative
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Iteratively Refined Confidence Maps



Training CPMs

overall loss

Ideal Confidence Maps for Intermediate Supervisions
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Stage 1 Stage 2 Stage T



Training CPMs
Joint training with Intermediate Supervisions
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Stage 1 Stage 2 Stage T



Training CPMs
Intermediate Supervisions Resolves Gradient Vanishing 
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With Intermediate Supervision
Without Intermediate Supervision

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3
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Convolutional Pose Machines
Overall Architecture with Shared Image Features

…
Stage 1 Stage 2 Stage T

Stage 1 Stage 2 Stage T



Training CPMs
Data Prepare and Augmentation
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Analysis and Results
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Benchmark Datasets

FLIC

3987 training

1016 testing

movie scenes

upper body

size

type

annotation

MPII

29116 training

11823 testing

diverse

full body w/ truncation

LSP

11000 training

1000 testing

sports

full body



Number of Stages

(error tolerance)

PCK 0.2
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Training Methods 

(error tolerance)

PCK 0.2
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Quantitatively Results
FLIC Upper Body with Observer Centric (OC) Annotations

PCK 0.2

PCK 0.1
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Quantitatively Results
LSP Dataset with Person Centric (PC) Annotations

PCK 0.2
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90.5

%



Quantitatively Results
MPII Dataset with PC Annotations

90.1

%

PCKh 0.5
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LSP



Quantitatively Results
MPII Dataset: Viewpoints
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right wrist

Failure Cases

rare viewpointL/R confusion severe occlusionrare pose
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Summary

• Monocular human pose estimation are becoming reliable.

• CPMs capture complex long-range part dependencies by 

iteratively refining confidence maps with preserved 

uncertainty.

• CPMs naturally avoid the problem of vanishing gradient by 

intermediate supervisions.
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What’s Next?
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From Single to Multi-Person
Challenge: Identifying number of people and part-person 

association
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Multi-person Human Pose Estimations
Naive Two-phase Method
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CPM with P = 1 (person detector)

Credit: Zhe Cao



Pose Estimations in Finer Scales
Faces

Source: Tomas Simon43



Pose Estimations in Finer Scales
Hands
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CMU Panoptic Studio
500 Synced Cameras



Multiple

Views

for

3D

Recon

Right Wrist
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Multiple Views for 3D Reconstruction

Source: Hanbyul Joo47



Projected

Full

Poses

Multiple

Views

for

3D

Recon
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Live Demo!
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Real-time CPMs
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Real-time CPMs: Confidence Map of Right Wrist
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- Analysis on failure cases and data distribution

- One-shot multi-person pose estimation

- Direct 3D reasoning

- Temporal CPMs

Future Directions



Thank you

Questions?

53

Check our Paper, Github, and Youtube Channel!


